Three-dimensional Finite Element Analysis of the Front Cross Member of the Peugeot 405
ثبت نشده
چکیده
Undoubtedly, chassis is one of the most important parts of a vehicle. Chassis that today are produced for vehicles are made up of four parts. These parts are jointed together by screwing. Transverse parts are called cross member. This study reviews the stress generated by cyclic laboratory loads in front cross member of Peugeot 405. In this paper the finite element method is used to simulate the welding process and to determine the physical response of the spot-welded joints. Analysis is done by the Abaqus software. The Stresses generated in cross member structure are generally classified into two groups: The stresses remained in form of residual stresses after welding process and the mechanical stress generated by cyclic load. Accordingly the total stress must be obtained by determining residual stress and mechanical stress separately and then sum them according to the superposition principle. In order to improve accuracy, material properties including physical, thermal and mechanical properties were supposed to be temperature-dependent. Simulation shows that maximum Von Misses stresses are located at special points. The model results are then compared to the experimental results which are reported by producing factory and good agreement is observed. Keywords—Chassis, cross member, residual stress, resistance spot weld.
منابع مشابه
Three-Dimensional Finite Element Analysis of Stress Intensity Factors in a Spherical Pressure Vessel with Functionally Graded Coating
This research pertains to the three-dimensional (3D) finite element analysis (FEA) of the stress intensity factors (SIFs) along the crack front in a spherical pressure vessel coated with functionally graded material (FGM). The vessel is subjected to internal pressure and thermal gradient. The exponential function is adopted for property of FGMs. SIFs are obtained for a wide variety of crack sha...
متن کاملDynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation
This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...
متن کاملEffect of Abutment Angulation and Material on Stress and Strain Distributions in Premaxillary Bone: A Three-Dimensional Finite Element Analysis
Background and Aim: Dental implants with angled abutments are often inserted in the anterior maxillary region due to the status of the residual ridge and aesthetic considerations. The purpose of this study was to assess stress and strain distributions in the premaxillary bone around dental implants by means of finite element analysis (FEA). Materials and Methods: Four three-dimensional (3D) fi...
متن کاملA two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis
Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has b...
متن کاملMechanical Buckling Analysis of Composite Annular Sector Plate with Bean-Shaped Cut-Out using Three Dimensional Finite Element Method
In this paper, mechanical buckling analysis of composite annular sector plates with bean shape cut out is studied. Composite material sector plate made of Glass-Epoxy and Graphite-Epoxy with eight layers with same thickness but different fiber angles for each layer. Mechanical loading to form of uniform pressure loading in radial, environmental and biaxial directions is assumed. The method used...
متن کامل